
Introduce Phi-3

Kinfey Lo
Microsoft Senior Cloud Advocate

Generative AI

GPT-3 GPT-3.5 GPT-4/4o

DALLE text ada
embedding Whisper

What is Phi-3 ?

The development of the Microsoft Phi

microsoft/phi-1

Python coding model with
perf. comparable to models 10x
larger trained on 100x more data

microsoft/phi-1_5

Natural language model
with NL comparable to models 10x larger
trained on 30x more data and reasoning
comparable to models 50x larger.

microsoft/phi-2

1.3B 1.3B 2.2.7B

a 2.7 billion-parameter language model
that demonstrates outstanding
reasoning and language understanding
capabilities, showcasing state-of-the-art
performance among base language
models with less than 13 billion
parameters

Code, Text Completion, Chat

Phi-3-mini

a 3.8B language model is available on Microsoft Azure AI Studio, Hugging Face,
and Ollama. Phi-3 models significantly outperform language models of the
same and larger sizes on key benchmarks (see benchmark numbers below,
higher is better). Phi-3-mini does better than models twice its size, and Phi-3-
small and Phi-3-medium outperform much larger models, including GPT-3.5

Phi-3-Vision

Phi-3-small with only 7B parameters beats GPT-3.5T across a variety of language,
reasoning, coding and math benchmarks.

Phi-3-medium with 14B parameters continues the trend and outperforms Gemini
1.0 Pro.

Phi-3-vision with just 4.2B parameters continues that trend and outperforms larger
models such as Claude-3 Haiku and Gemini 1.0 Pro V across general visual
reasoning tasks, OCR, table and chart understanding tasks.

Phi-3-small & medium

Microsoft Phi 3 Family

Microsoft Phi 3 Family

Phi-3-mini
(3.8B)

Phi-3-small
(7B)

Phi-3-mini-V
(3.8B + 0.3B)

Core Value Proposition

üGroundbreaking performance at a small size: Faster and Cost Effective & Low costs in Fine
Tuning. Excellent performance in latency bound scenarios where fast response times are critical

üUnlocking new capabilities: Works best across resource constrained environments where local
inference may be needed. Can deploy on edge & cloud with ONNX & TensorFlow Lite

üSafe by Design: Developed in accordance with Microsoft Responsible AI principles & trained on
with high quality data

Description
Phi-3 Mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-2 -
synthetic data and filtered websites - with a focus on very high-quality, reasoning dense data. The
model belongs to the Phi-3 model family and incorporates safety, alignment, and RLHF training.

Architecture Phi-3 Mini has 3.8B parameters and is a dense decoder-only Transformer model.

Inputs Text. It’s best suited for prompts using chat format.

Context length 128K tokens - “the first model in its weight class to support long-context of up to 128K”

Outputs Generated text in response to the input
Dates Trained between Feb 2024 and April 2024

Status This is a static model trained on an offline dataset. Future versions of the tuned models may be
released as we improve models.

License MIT

Small Language Model, Best in class performance for size, with frictionless availability

Available todayAvailable today Available today

Microsoft Phi 3

Phi-3-mini
(3.8B)

Phi-3-small
(7B)

Phi-3-mini-V
(3.8B + 0.3B)

ONNX RunDme

GGUF

Quantitative(INT4,FP16,FP32)

Demo : Call Phi-3-mini & Phi-3-Vision

Fine-tuning vs RAG

How about RAG?

RAG - Retrieval-Augmented Generation
RAG is data retrieval + text generation. The structured data and unstructured data of the enterprise are stored in the vector database.
When searching for relevant content, the relevant summary and content are found to form a context, and the text completion capability
of LLM/SLM is combined to generate content.

A vector database is a collec/on of data stored in mathema/cal form. Vector databases make it easier for machine learning models to remember previous
inputs, enabling machine learning to be used to support use cases such as search, recommenda/ons, and text genera/on. Data can be iden/fied based on
similarity metrics rather than exact matches, allowing computer models to understand the context of the data.

Vector database is the key to realizing RAG. We can convert data into vector storage through vector models such as text-embedding-3, jina-ai-embedding,
etc.

Demo : RAG with Phi-3

Fine-tuning
Fine-tuning is based on improvement of a certain model. It does not need to start with the model algorithm, but data needs to
be continuously accumulated. If you want more precise terminology and language expression in industry applications, fine-
tuning is your better choice. But if your data changes frequently, fine-tuning can become complicated.

LoRA (Low-Rank Adaptation) and QLoRA (Quantized Low-Rank Adaptation) are both techniques
used to fine-tune large language models (LLMs) using Parameter Efficient Fine Tuning (PEFT). PEFT
techniques are designed to train models more efficiently than traditional methods.

LoRA is a standalone finetuning technique that reduces memory footprint by applying a low-rank
approximation to the weight update matrix. It offers fast training times and maintains performance
close to traditional fine-tuning methods.

QLoRA is an extended version of LoRA that incorporates quantization techniques to further reduce
memory usage. QLoRA quantizes the precision of the weight parameters in the pre-trained LLM to 4-
bit precision, which is more memory efficient than LoRA. However, QLoRA training is about 30% slower
than LoRA training due to the additional quantization and dequantization steps.

QLoRA uses LoRA as an accessory to fix the errors introduced during quantization errors. QLoRA
enables the fine-tuning of massive models with billions of parameters on relatively small, highly
available GPUs. For example, QLoRA can fine-tune a 70B parameter model that requires 36 GPUs with
only 2

RAG vs Fine-tuning
How to choose

• If our answer requires the introduction of external data, RAG is the best choice

• If you need to output stable and precise industry knowledge, fine-tuning will be a good choice. RAG
prioritizes pulling relevant content but might not always nail the specialized nuances.

• Fine-tuning requires a high-quality data set, and if it is just a small range of data, it will not make much
difference. RAG is more flexible

• Fine-tuning is a black box, a metaphysics, and it is difficult to understand the internal mechanism. But RAG
can make it easier to find the source of the data, thereby effectively adjusting hallucinations or content errors
and providing better transparency.

Scenarios

• Vertical industries require specific professional vocabulary and expressions, Fine-tuning will be the best
choice

• QA system, involving the synthesis of different knowledge points, RAG will be the best choice

• The combination of automated business flow RAG + Fine-tuning is the best choice

Microsoft Olive

Olive.config as Service

Lakehouse

AML Datastores

import

Olive.config

Fine-tuning

AML Compute Cluster

FP16

FP32

INT4

ONNX Runtime

ONNX Runtime

ONNX Runtime

Convert

Convert

Convert

Edge Device

Edge Device

Edge Device

Deployment

Evaluations
SLMwithEdgeDevice

Phi-3-mini

Deployment

Deployment

Demo

Begin to talk about Cloud Native

Phi-3-mini
(3.8B)

Phi-3-small
(7B)

Phi-3-mini-V
(3.8B + 0.3B)

What’s .NET Aspire

.NET Aspire is designed to improve the experience of
building .NET cloud-native apps. It provides a
consistent, opinionated set of tools and patterns that
help you build and run distributed apps. .NET Aspire
is designed to help you with:

• Orchestration: .NET Aspire provides features for running and
connecting multi-project applications and their dependencies
for local development environments.

• Components: .NET Aspire components are NuGet packages for
commonly used services, such as Redis or Postgres, with
standardized interfaces ensuring they connect consistently and
seamlessly with your app.

• Tooling: .NET Aspire comes with project templates and tooling
experiences for Visual Studio, Visual Studio Code, and the dotnet
CLI to help you create and interact with .NET Aspire projects.

AI@.NET Aspire
Building Generative AI apps with .NET 8

https://devblogs.microsoft.com/dotnet/build-gen-ai-with-dotnet-8/

https://devblogs.microsoft.com/dotnet/build-gen-ai-with-dotnet-8/

Demo : .NET Aspire with Phi3-mini

Phi-3-mini
(3.8B)

ONNX Runtime
Phi-3-mini-Service

Semantic Kernel

AI Orchestra3on-Service

Blazor
ChatUI Service

Ask question connect

gguf

Quantification
(INT4,FP16,FP32)

Running

🏃

Edge Devices

Your Enterprise Data

Tools (Microsoft Olive)

LoRA / QLoRA
Finetuning

GPU,CPU, AKS,ACA
Seman&c Kernel LangChain LlamaIndex Promp7low

Your Enterprise Data

Copilot Application

Phi3 Family

Vectorization
RAG

Phi-3 Solution

🤖

hNps://aka.ms/phi-3cookbook

Copilot Framework

Deployment

Application

Phi-3 Cookbook

